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NOTE

Analysis of a Fourth-Order Compact Scheme for
Convection-Diffusion’

1. INTRODUCTION

In 1984 Gupta et al. [3] introduced a compact fourth-
order finite-difference convection—diffusion operator with
some very favorable properties. In particular, this scheme
does not seem to suffer excessively from spurious oscilla-
tory behavior, and it converges with standard methods
such as Gauss Seidel or SOR (hence, multigrid) regardless
of the diffusion [7]. This scheme has been rederived, devel-
oped (including some variations), and applied in both
convection—diffusion and Navier—Stokes equations by sev-
eral authors [1, 2, 4-6]. Accurate solutions to high Reyn-
olds-number flow problems at relatively coarse resolutions
have been reported (e.g., [1,2]). These solutions were often
compared to those obtained by lower order discretizations,
such as second-order central differences and first-order
upstream discretizations. The latter, it was stated, achieved
far less accurate results due to the artificial viscosity, which
the compact scheme did not include [3].

We show here that, while the compact scheme indeed
does not suffer from a cross-stream artificial viscosity (as
does the first-order upstream scheme when the characteris-
tic direction is not aligned with the grid), it does include
a streamwise artificial viscosity that is inversely propor-
tional to the natural viscosity. This term is not always
benign.

2. THE EQUATION AND ITS DISCRETIZATION

To be consistent with [3] we write the convection—
diffusion equation with Dirichlet boundary conditions in
two dimensions as

U + Uy, + puc + qu, :]_C, (x,y) €Q,

(x,y) € 9Q. W

u(x,y) =g
Here, u is the solution and p, g, and f are generally func-
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tions of x and y. Here we shall assume constant p and
¢ in order to greatly simplify the discussion. As we are
interested in the convection-dominated case, which would
imply very large p and g in (1), we rescale this equation as

where & = 1/max(|p|, |q|). Multiplying (1) through by &

we obtain

(U + Uyy) + pu, + qu, = f (2)

in ), with the same boundary condition as in (1). Since
the convection operator is a (scaled) derivative in the char-
acteristic direction, which we denote by & we denote this
operator by

D,=pa, + qo,.

Suppose that we discretize (2) on a uniform grid of
meshsize h. For constant p and ¢ we can write the discre-
tized problem using the compact fourth-order scheme of
[3] as

2

2
[sAh + DI+ h—Dgg] u = [Ih + h

2
B 2y

12¢ 12 12¢ ¢

®)

where & superscripts denote discrete values and operators.
Here, I" is the grid-k identity. The rest of the discrete
operators are defined by the following stencils. We also
write the differential operators they approximate and cor-
responding truncation errors obtained by Taylor series
expansions:
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Here, Ais the Laplacian and D is the square of the convec-
tion operator:

Dy = p*d + 2pqdy, + q0,,.

Now, substitution of the differential operators and trunca-
tion terms of (4) into (3) produces, after some manipulation
utilizing the commutativity of A and Dy,

h? h? n W on
+— A+ + —
(1 A 128D§> (e Au" + D’ — )

= O((1 + & YA,

®)

where we have assumed differentiable extensions of u”
and f” to Q for convenience of notation.

Equation (5) allows us to analyze the scheme. We as-
sume smooth u” and f*. Clearly the discretization is consis-
tent since, for a fixed e, u” satisfies the differential equation
when /4 tends to zero. Formally, the right-hand side of (5)
is O(h*), consistent with the scheme’s known fourth-order
accuracy. But the size of this truncation term also depends
on e. Thus, for any fixed ¢ we expect the accuracy of a
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smooth solution to improve by a factor 16 when we halve
the meshsize, say. But when & = A (cell-Reynolds number
approximately equal to one), the right-hand side is actually
O(h?), and when & =~ h® it is O(h?). The scheme thus
becomes less accurate in the convection-dominated case.

Consider, moreover, the limit &/h*> < 1. The dominant
terms in (5) then satisfy

Dy(e Au” + Dt — ') = O(h). (6)

Now the discretization no longer approximates the convec-
tion equation but rather its streamwise derivative (with
O(h?) relative truncation error). As a result the discretiza-
tion becomes insensitive to f* that is constant along the
characteristic direction, though the original equation is not.
Furthermore, the main term in the approximated equation
is now a streamwise second derivative instead of a first
derivative. Hence, both “inflow” and ‘“‘outflow” boundary
conditions strongly affect the solution throughout the do-
main, instead of there being an O(g) boundary layer. In
effect, the operator has become fully viscous in the stream-
wise direction.

In intermediate regimes the approximated equation is
some combination of the convection equation and its
streamwise derivative. The effect of the latter becomes
noticeable when the cell Reynolds number is approxi-
mately one, since then the streamwise viscosity term is
roughly equal to the natural viscosity. If we further reduce
the viscosity ¢ the solution will actually become more and
more viscous in the streamwise direction. We expect the
boundary layer to be thinnest when the sum of the natural
viscosity and the artificial streamwise viscosity is minimal,
ie., e = 12712,

TABLE I

Computed Boundary-Layer Decay Rates Compared
with the Exact Rate

4th Order Upstream
Exact
(e/h) (&/h)

2.0000 2.0002 2.4623
1.0000 1.0015 1.4426
0.4000 0.4300 0.7982
0.3000 0.3804 0.6820
0.2887 0.3797 0.6684
0.2500 0.3899 0.6213
0.2000 0.4427 0.5581
0.0400 2.0835 0.3069
0.0040 16.912 0.1810
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3. NUMERICAL EXAMPLES

In our examples ) = (0, 1) X (0, 1), and we use a grid
of 41 by 41 points, including the boundary, so that & =
0.025. We compare solutions obtained with the fourth-
order compact scheme to those produced by a standard
first-order upstream discretization (in fact downstream,
because the viscosity here was chosen with a positive sign
for consistency with [3], but this is moot).

ExampLE 1. We choose the simple problemp =1, g =
f=0, withu =1atx =0,and u = 0 at x = 1. The
top and bottom boundary conditions are chosen to be
consistent with the 1D solution, i.e.,

= exp(—x/e) — exp(—1/g)
1 —exp(—1/g) '

The small-¢ solution is very close to zero throughout the
domain except in an O(e) boundary layer near x = 0,
where it decays exponentially from its boundary value of
1. Hence, we test the accuracy of the computed results by
fitting the function exp(—x/&) to the calculated solutions
at y = 0.5 from x = 0 to x = 0.25, and comparing & to e.
The results appear in Table 1 for several values of &/h.
For e/h = 1 the high-order scheme is very accurate. But
just as predicted, the least viscous solution occurs at ¢/h =
127Y2, For smaller values the boundary layer thickens
monotonically as predicted by our analysis. For example,
at ¢ = 1/1000 (eighth row) the solution is close to that of
e = 1/20 (first row), because the streamwise “artificial
viscosity” is h*/12e = 1/19.2).

The low-order solution’s boundary-layer thickness is not
as good as that of the high-order scheme when &/h is
moderate, but it is reduced monotonically as € is decreased.
Of course the main weakness of the upstream discretization
is concealed in this example due to the perfect alignment
of the characteristics with the grid and the absence of cross-
stream variation.

ExaMPLE 2. On the same domain letp = g = 1, and let

-1 y>x,
f=4 0, y=x,
1, y<ux,

with u = 0 on 9{). Note that fis constant along characteris-
tics. Here the solution in the inviscid limit decays linearly
in the left-upper triangle and grows linearly the right-lower
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Diagonal

FIG. 1. Diagonal cross-section of u” obtained with the high-order
scheme (top) and upstream scheme (bottom). The solid line shows the
exact inviscid solution. Long dashes correspond to ¢ = 0.01, alternating
dashes to € = 0.001, and short dashes to & = 0.0001.

triangle. In Fig. 1 we plot the solutions along the cross-
section x = 1 — y from the upper left to the lower right
corner of the domain. The inviscid “‘sawtooth’ exact solu-
tion (restricted to the present grid) is shown by the solid
lines in Fig. 1. Here, it is not a priori obvious what the
optimal & will be for the high-order scheme, because the
cross-stream viscosity plays an important role. It turns out
that the least damped solution is obtained at about ¢ =
0.001. When ¢ is reduced further, the insensitivity of the
streamwise second derivative to f that is independent on
the streamwise coordinate leads to the expected deteriora-
tion in the solution. Note also that there is some overshoot
in the small-e results, although it does not seem to be
very severe.

For the upstream scheme this is a worst-case example
because of the maximal nonalignment and the strong ad-
verse effect of cross-stream viscosity. The results with this
scheme improve monotonically as ¢ is reduced and with
no oscillatory behavior, as expected. But they are not as
good as the best results obtained with the high-order
scheme. Here, the use of a so-called ‘“narrow” upstream
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scheme would improve the results significantly, and more
sophisticated higher-order schemes with limiters would do
still better.

4. DISCUSSION AND CONCLUSIONS

For large cell Reynolds numbers our analysis and simple
tests show that the compact fourth-order convection—
diffusion scheme may yield spurious behavior in at least
two cases: (a) Due to boundary information propagating
nonphysically along the characteristics. (b) Due to a forcing
function f, or some component of it, that is constant along
characteristics. Suitable caution is therefore recommended
when using this scheme in such situations even for solutions
that are very smooth almost everywhere. It would be useful
if the deficiencies reported here could be overcome by
employing alternative boundary conditions, but we could
not find a reasonable way to do this.

Our findings do not contradict reports of accurate incom-
pressible Navier Stokes solutions to the driven cavity prob-
lem, for example. In this problem all streamlines form
closed curves, and the characteristics never cross a bound-
ary, so our first example does not apply. Also, the vorticity
equation has zero right-hand side, so the second example
does not apply either. Indeed it may well be that the defi-
ciencies reported here do not appear in any important
problem of purely recirculating flow, since such problems
are ill-posed in the limit of vanishing viscosity unless the
integral of the right-hand side function along each closed
characteristic vanishes. This precludes a nonzero compo-
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nent of fthat is constant along the characteristic. However,
this matter requires further investigation.
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